
RTRTR User Manual
Release 0.2.3-dev

NLnet Labs

Jun 13, 2022

CONTENTS

1 Installation 3
1.1 System Requirements . 3
1.2 Binary Packages . 3
1.3 Updating . 6
1.4 Installing Specific Versions . 7

2 Building From Source 9
2.1 Dependencies . 9
2.2 Building and Updating . 10
2.3 Platform Specific Instructions . 11

3 Configuration 13
3.1 General Parameters . 13
3.2 Units . 14
3.3 Targets . 15

4 Example Scenario 17
4.1 Configuration File . 17

5 Manual Page 21
5.1 Synopsis . 21
5.2 Description . 21
5.3 Options . 21
5.4 Configuration File . 22
5.5 Global Options . 22
5.6 RTR Units . 23
5.7 JSON Unit . 23
5.8 Any Unit . 24
5.9 SLURM Unit . 24
5.10 RTR Targets . 24
5.11 HTTP Target . 25
5.12 Logging . 25

Index 27

i

ii

RTRTR User Manual, Release 0.2.3-dev

A versatile toolbox RTRTR is an RPKI data proxy, designed to collect Validated ROA Payloads from one or more
sources in multiple formats and dispatch it onwards. It provides the means to implement multiple distribution
architectures for RPKI such as centralised RPKI validators that dispatch data to local caching RTR servers.

Secure and redundant RTR connections RTRTR can read RPKI data from multiple RPKI Relying Party packages
via RTR and JSON and, in turn, provide an RTR service for routers to connect to. The HTTP server provides the
validated data set in JSON format, as well as a monitoring endpoint in plain text and Prometheus format. TLS is
supported on all connections.

Open source with community and professional support NLnet Labs offers professional support services with a
service-level agreement. We also provide a mailing list and Discord server for community support and to ex-
change operational experiences. RTRTR is liberally licensed under the BSD 3-Clause license.

CONTENTS 1

https://www.nlnetlabs.nl/services/contracts/
https://lists.nlnetlabs.nl/mailman/listinfo/rpki
https://discord.gg/8dvKB5Ykhy
https://github.com/NLnetLabs/rtrtr/blob/main/LICENSE

RTRTR User Manual, Release 0.2.3-dev

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 System Requirements

When choosing a system to run RTRTR on, make sure you have 1GB of available memory and 1GB of disk space.

1.2 Binary Packages

Getting started with RTRTR is really easy by installing a binary package for either Debian and Ubuntu or for Red Hat
Enterprise Linux (RHEL) and compatible systems such as Rocky Linux. Alternatively, you can run with Docker.

You can also build RTRTR from the source code using Cargo, Rust’s build system and package manager. Cargo lets
you to run RTRTR on almost any operating system and CPU architecture. Refer to the Building From Source section
to get started.

Debian

Ubuntu

RHEL/CentOS

Docker

To install an RTRTR package, you need the 64-bit version of one of these Debian versions:

• Debian Bullseye 11

• Debian Buster 10

• Debian Stretch 9

Packages for the amd64/x86_64 architecture are available for all listed versions. In addition, we offer armhf architec-
ture packages for Debian/Raspbian Bullseye, and arm64 for Buster.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
ca-certificates \
curl \
gnupg \
lsb-release

3

RTRTR User Manual, Release 0.2.3-dev

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/
→˓keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

Update the apt package index once more:

sudo apt update

You can now install RTRTR with:

sudo apt install rtrtr

Configure RTRTR by editing /etc/rtrtr.conf and start it with:

sudo systemctl enable --now rtrtr

You can check the status of RTRTR with:

sudo systemctl status rtrtr

You can view the logs with:

sudo journalctl --unit=rtrtr

To install an RTRTR package, you need the 64-bit version of one of these Ubuntu versions:

• Ubuntu Jammy 22.04 (LTS)

• Ubuntu Focal 20.04 (LTS)

• Ubuntu Bionic 18.04 (LTS)

• Ubuntu Xenial 16.04 (LTS)

Packages are available for the amd64/x86_64 architecture only.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
ca-certificates \
curl \
gnupg \
lsb-release

Add the GPG key from NLnet Labs:

4 Chapter 1. Installation

RTRTR User Manual, Release 0.2.3-dev

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/
→˓keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

Update the apt package index once more:

sudo apt update

You can now install RTRTR with:

sudo apt install rtrtr

Configure RTRTR by editing /etc/rtrtr.conf and start it with:

sudo systemctl enable --now rtrtr

You can check the status of RTRTR with:

sudo systemctl status rtrtr

You can view the logs with:

sudo journalctl --unit=rtrtr

To install an RTRTR package, you need Red Hat Enterprise Linux (RHEL) 7 or 8, or compatible operating system such
as Rocky Linux. Packages are available for the amd64/x86_64 architecture only.

First create a file named /etc/yum.repos.d/nlnetlabs.repo, enter this configuration and save it:

[nlnetlabs]
name=NLnet Labs
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/main/$basearch
enabled=1

Then run the following command to add the public key:

sudo rpm --import https://packages.nlnetlabs.nl/aptkey.asc

You can then install RTRTR by running:

sudo yum install -y rtrtr

Configure RTRTR by editing /etc/rtrtr.conf and start it with:

sudo systemctl enable --now rtrtr

You can check the status of RTRTR with:

sudo systemctl status rtrtr

1.2. Binary Packages 5

RTRTR User Manual, Release 0.2.3-dev

You can view the logs with:

sudo journalctl --unit=rtrtr

RTRTR Docker images are built with Alpine Linux for amd64/x86_64 architecture.

To run RTRTR with Docker you will first need to create an rtrtr.conf file somewhere on your host computer and
make that available to the Docker container when you run it. For example if your config file is in /etc/rtrtr.conf
on the host computer:

docker run -v /etc/rtrtr.conf:/etc/rtrtr.conf nlnetlabs/rtrtr -c /etc/rtrtr.conf

RTRTR will need network access to fetch and publish data according to the configured units and targets respectively.
Explaining Docker networking is beyond the scope of this Quick Start, however below are a couple of examples to get
you started.

If you need an RTRTR unit to fetch data from a source port on the host you will also need to give the Docker container
access to the host network. For example one way to do this is with --net=host, where ... represents the rest of the
arguments to pass to Docker and RTRTR:

docker run --net=host ...

If you’re not using --net=host you will need to tell Docker to expose the RTRTR target ports, either one by one using
-p, or you can publish the default ports exposed by the Docker container (and at the same time remap them to high
numbered ports) using -P:

docker run -p 8080:8080/tcp -p 9001:9001/tcp ...

Or:

docker run -P ...

1.3 Updating

Debian

Ubuntu

RHEL/CentOS

Docker

To update an existing RTRTR installation, first update the repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy rtrtr

You can upgrade an existing RTRTR installation to the latest version using:

sudo apt --only-upgrade install rtrtr

To update an existing RTRTR installation, first update the repository using:

6 Chapter 1. Installation

RTRTR User Manual, Release 0.2.3-dev

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy rtrtr

You can upgrade an existing RTRTR installation to the latest version using:

sudo apt --only-upgrade install rtrtr

To update an existing RTRTR installation, you can use this command to get an overview of the available versions:

sudo yum --showduplicates list rtrtr

You can update to the latest version using:

sudo yum update -y rtrtr

Upgrading to the latest version of RTRTR can be done with:

docker run -it nlnetlabs/rtrtr:latest

1.4 Installing Specific Versions

Before every new release of RTRTR, one or more release candidates are provided for testing through every installation
method. You can also install a specific version, if needed.

Debian

Ubuntu

RHEL/CentOS

Docker

If you would like to try out release candidates of RTRTR you can add the proposed repository to the existing main
repository described earlier.

Assuming you already have followed the steps to install regular releases, run this command to add the additional
repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.
→˓list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available versions:

sudo apt policy rtrtr

You can install a specific version using <package name>=<version>, e.g.:

1.4. Installing Specific Versions 7

RTRTR User Manual, Release 0.2.3-dev

sudo apt install rtrtr=0.1.1~rc2-1buster

If you would like to try out release candidates of RTRTR you can add the proposed repository to the existing main
repository described earlier.

Assuming you already have followed the steps to install regular releases, run this command to add the additional
repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-
→˓keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.
→˓list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available versions:

sudo apt policy rtrtr

You can install a specific version using <package name>=<version>, e.g.:

sudo apt install rtrtr=0.1.1~rc2-1bionic

To install release candidates of RTRTR, create an additional repo file named /etc/yum.repos.d/
nlnetlabs-testing.repo, enter this configuration and save it:

[nlnetlabs-testing]
name=NLnet Labs Testing
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/proposed/$basearch
enabled=1

You can use this command to get an overview of the available versions:

sudo yum --showduplicates list rtrtr

You can install a specific version using <package name>-<version info>, e.g.:

sudo yum install -y rtrtr-0.1.1

All release versions of RTRTR, as well as release candidates and builds based on the latest main branch are available
on Docker Hub.

For example, installing RTRTR 0.1.1 is as simple as:

docker run -it nlnetlabs/rtrtr:v0.1.1

8 Chapter 1. Installation

https://hub.docker.com/r/nlnetlabs/rtrtr/tags?page=1&ordering=last_updated

CHAPTER

TWO

BUILDING FROM SOURCE

In addition to meeting the system requirements, there are two things you need to build RTRTR: a C toolchain and Rust.
You can run RTRTR on any operating system and CPU architecture where you can fulfil these requirements.

2.1 Dependencies

2.1.1 C Toolchain

Some of the libraries RTRTR depends on require a C toolchain to be present. Your system probably has some easy way
to install the minimum set of packages to build from C sources. For example, this command will install everything you
need on Debian/Ubuntu:

apt install build-essential

If you are unsure, try to run cc on a command line. If there is a complaint about missing input files, you are probably
good to go.

2.1.2 Rust

The Rust compiler runs on, and compiles to, a great number of platforms, though not all of them are equally supported.
The official Rust Platform Support page provides an overview of the various support levels.

While some system distributions include Rust as system packages, RTRTR relies on a relatively new version of Rust,
currently 1.52 or newer. We therefore suggest to use the canonical Rust installation via a tool called rustup.

Assuming you already have curl installed, you can install rustup and Rust by simply entering:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Alternatively, visit the Rust website for other installation methods.

9

https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://www.rust-lang.org/tools/install

RTRTR User Manual, Release 0.2.3-dev

2.2 Building and Updating

In Rust, a library or executable program such as RTRTR is called a crate. Crates are published on crates.io, the Rust
package registry. Cargo is the Rust package manager. It is a tool that allows Rust packages to declare their various
dependencies and ensure that you’ll always get a repeatable build.

Cargo fetches and builds RTRTR’s dependencies into an executable binary for your platform. By default you install
from crates.io, but you can for example also install from a specific Git URL, as explained below.

Installing the latest RTRTR release from crates.io is as simple as running:

cargo install --locked rtrtr

The command will build RTRTR and install it in the same directory that Cargo itself lives in, likely $HOME/.cargo/
bin. This means RTRTR will be in your path, too.

2.2.1 Updating

If you want to update to the latest version of RTRTR, it’s recommended to update Rust itself as well, using:

rustup update

Use the --force option to overwrite an existing version with the latest RTRTR release:

cargo install --locked --force rtrtr

Once RTRTR is installed, you need to create a Configuration file that suits your needs. The config file to use needs to
be passed to RTRTR via the -c option, i.e.:

rtrtr -c rtrtr.conf

2.2.2 Installing Specific Versions

If you want to install a specific version of RTRTR using Cargo, explicitly use the --version option. If needed, use
the --force option to overwrite an existing version:

cargo install --locked --force rtrtr --version 0.2.0-rc2

All new features of RTRTR are built on a branch and merged via a pull request, allowing you to easily try them out
using Cargo. If you want to try a specific branch from the repository you can use the --git and --branch options:

cargo install --git https://github.com/NLnetLabs/rtrtr.git --branch main

See also:

For more installation options refer to the Cargo book.

10 Chapter 2. Building From Source

https://crates.io/crates/rtrtr
https://github.com/NLnetLabs/rtrtr/pulls
https://doc.rust-lang.org/cargo/commands/cargo-install.html#install-options

RTRTR User Manual, Release 0.2.3-dev

2.3 Platform Specific Instructions

For some platforms, rustup cannot provide binary releases to install directly. The Rust Platform Support page lists
several platforms where official binary releases are not available, but Rust is still guaranteed to build. For these plat-
forms, automated tests are not run so it’s not guaranteed to produce a working build, but they often work to quite a
good degree.

2.3.1 OpenBSD

On OpenBSD, patches are required to get Rust running correctly, but these are well maintained and offer the latest
version of Rust quite quickly.

Rust can be installed on OpenBSD by running:

pkg_add rust

2.3.2 CentOS 6

The standard installation method does not work when using CentOS 6. Here, you will end up with a long list of error
messages about missing assembler instructions. This is because the assembler shipped with CentOS 6 is too old.

You can get the necessary version by installing the Developer Toolset 6 from the Software Collections repository. On
a virgin system, you can install Rust using these steps:

sudo yum install centos-release-scl
sudo yum install devtoolset-6
scl enable devtoolset-6 bash
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env

2.3. Platform Specific Instructions 11

https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://github.com/openbsd/ports/tree/master/lang/rust/patches
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-6/
https://wiki.centos.org/AdditionalResources/Repositories/SCL

RTRTR User Manual, Release 0.2.3-dev

12 Chapter 2. Building From Source

CHAPTER

THREE

CONFIGURATION

RTRTR uses two classes of components: units and targets. Units take data from somewhere and produce a single,
constantly updated data set. Targets take the data set from exactly one other unit and serve it in some specific way.

Both units and targets have a name — so that we can refer to them — and a type that defines which particular kind of
unit or target this is. For each type, additional arguments need to be provided. Which these are and what they mean
depends on the type.

Units and targets can be wired together in any way to achieve your specific goal. This is done in a configuration file,
which also specifies several general parameters for logging, as well as status and Prometheus metrics endpoints via the
built-in HTTP server.

Note: The configuration file is in TOML (Tom's Obvious Minimal Language) format, which is somewhat similar to
INI files. You can find more information on the TOML website.

3.1 General Parameters

The configuration file starts out with a number of optional parameters to specify logging. The built-in HTTP server
provides status information at the /status path and Prometheus metrics at the /metrics path. Note that details are
provided for each unit and each target.

The minimum log level to consider.
log_level = "debug"

The target for logging. This can be "syslog", "stderr", "file", or "default".
log_target = "stderr"

If syslog is used, the syslog facility can be given.
log_facility = "daemon"

If file logging is used, the log file must be given.
log_file = "/var/log/rtrtr.log"

Where should the HTTP server listen on?
http-listen = ["127.0.0.1:8080"]

13

https://toml.io/en/

RTRTR User Manual, Release 0.2.3-dev

3.2 Units

RTRTR currently has four types of units. Each unit gets its own section in the configuration. The name of the section,
given in square brackets, starts with units. and is followed by a descriptive name you set, which you can later refer
to from other units, or a target.

3.2.1 RTR Unit

The unit of the type rtr takes a feed of Validated ROA Payloads (VRPs) from a Relying Party software instance via the
RTR protocol. Along with a unique name, the only required argument is the IP or hostname of the instance to connect
to, along with the port.

Because the RTR protocol uses sessions and state, we don’t need to specify a refresh interval for this unit. Should the
server close the connection, by default RTRTR will retry every 60 seconds. This value is configurable wih the retry
option.

[units.rtr-unit-name]
type = "rtr"
remote = "validator.example.net:3323"

It’s also possible to configure RTR over TLS, using the rtr-tls unit type. When using this unit type, there is an
additional configuration option, cacerts, which specifies a list of paths to files that contain one or more PEM encoded
certificates that should be trusted when verifying a TLS server certificate.

The rtr-tls unit also uses the usual set of web trust anchors, so this option is only necessary when the RTR server
doesn’t use a server certificate that would be trusted by web browser. This is, for instance, the case if the server uses a
self-signed certificate in which case this certificate needs to be added via this option.

3.2.2 JSON Unit

Most Relying Party software packages can produce the Validated ROA Payload set in JSON format as well, either as
a file on disk or at an HTTP endpoint. RTRTR can use this format as a data source too, using units of the type json.
Along with specifying a name, you must specify the URI to fetch the VRP set from, as well as the refresh interval in
seconds.

[units.json-unit-name]
type = "json"
uri = "http://validator.example.net/vrps.json"
refresh = 60

3.2.3 Any Unit

The any unit type is given any number of other units and picks the data set from one of them. Units can signal that they
currently don’t have an up-to-date data set available, allowing the any unit to skip those. This ensures there is always
an up-to-date data set available.

Important: The any unit uses a single data source at a time. RTRTR does not attempt to make a union or intersection
of multiple VRPs sets, to avoid the risk of making a route invalid that would otherwise be unknown.

To configure this unit, specify a name, set the type to any and list the sources that should be used. Lastly, specify if a
random unit should be selected every time it needs to switch or whether it should go through the list in order.

14 Chapter 3. Configuration

RTRTR User Manual, Release 0.2.3-dev

[units.any-unit-name]
type = "any"
sources = ["unit-1", "unit-2", "unit-3"]
random = false

3.2.4 SLURM Unit

In some cases, you may want to override the global RPKI data set with your own local exceptions. You can do this by
specifying route origins that should be filtered out of the output, as well as origins that should be added, in a file using
JSON notation according to the SLURM (Simplified Local Internet Number Resource Management with the RPKI)
standard specified in RFC 8416.

You can refer to the JSON file you created with a unit of the type slurm. As the source to which the exceptions should
be applied, you must specify any of the other units you have created. Note that the files attribute is an array and can
take multiple values as input.

[units.slurm]
type = "slurm"
source = "source-unit-name"
files = ["/var/lib/rtrtr/local-expections.json"]

The Local Exceptions page in the Routinator documentation has more information on the format and syntax of SLURM
files.

3.3 Targets

RTRTR currently has two types of targets. As with units, each unit gets its own section in the configuration. And also
here, the name of the section starts with targets. and is followed by a descriptive name you set, all enclosed in square
brackets.

3.3.1 RTR Target

Targets of the type rtr let you serve the data you collected with your units via the RPKI-to-Router (RTR) protocol.
You must give your target a name and specify the host name or IP address it should listen on, along with the port. As
the RTR target can listen on multiple addresses, the listen argument is a list. Lastly, you must specify the name of the
unit the target should receive its data from.

[targets.rtr-target-name]
type = "rtr"
listen = ["127.0.0.1:9001"]
unit = "source-unit-name"

This target also supports TLS connections, via the rtr-tls type. This target has two additional configuration options.
First, the certificate option, which is a string value providing a path to a file containing the PEM-encoded certificate
to be used as the TLS server certificate. And secondly, there is the key option, which provides a path to a file containing
the PEM-encoded certificate to be used as the private key by the TLS server.

3.3. Targets 15

https://tools.ietf.org/html/rfc8416.html
https://routinator.docs.nlnetlabs.nl/en/stable/local-exceptions.html

RTRTR User Manual, Release 0.2.3-dev

3.3.2 HTTP Target

Targets of the type http let you serve the collected data via HTTP, which is currently only possible in json format.
You can us this data stream for monitoring, provisioning, your IP address management, or any other purpose that you
require. To use this target, specify a name and a path, as well as the name of the unit the target should receive its data
from.

[targets.http-target-name]
type = "http"
path = "/json"
format = "json"
unit = "source-unit-name"

16 Chapter 3. Configuration

CHAPTER

FOUR

EXAMPLE SCENARIO

To make it clearer how you can deploy RTRTR, below is an example scenario. This flow may not be entirely realistic,
but it intends to show all the different ways you can wire units and targets together using a visual representation and
the configuration file needed to accomplish it.

In this example, there is routing infrastructure in a data centre labeled as dc1. To ensure redundancy, it gets Validated
ROA Payloads (VRPs) primarily from relying party software running in the eu-west-3 location, using the RTR proto-
col. There are two backups configured: a validator serving RTR in ap-south-1 and an instance from another vendor
offering a feed in JSON format in us-east-2. A unit of the type any is configured to get a feed from all three and,
should the first one fail, do a round robin to the next available one.

To make the management of some statically configured routes for this location easy, the slurm unit gets its data from
the any unit so only a single file has to be kept up-to-date.

Finally, an http target is configured to get the VRPs without the SLURM exceptions, to be fed into internal tooling
and an rtr unit is defined to serve the routing infrastructure.

4.1 Configuration File

log_level = "debug"
log_target = "stderr"
log_facility = "daemon"
log_file = "/var/log/rtrtr.log"

http-listen = ["dc1.http.example.net:8080"]

RTR UNITS

[units.eu-west-3]
type = "rtr"
remote = "paris.validator.example.net:3323"

[units.ap-south-1]
type = "rtr"
remote = "mumbai.validator.example.net:3323"

JSON UNIT

[units.us-east-2]
type = "json"
uri = "https://ohio.validator.example.net/rpki.json"

(continues on next page)

17

RTRTR User Manual, Release 0.2.3-dev

Units

Relying Party
Instance A

Relying Party
Instance B

Relying Party
Instance C

Routing infrastructureInternal tooling

Targets

{;}JSON
"us-east-2"

RTR
"ap-south-1"

101
010

RTR
"eu-west-3"

101
010

SLURM
"static-routes"

ANY
"round-robin"

HTTP
"dc1-json"

RTR
"dc1-rtr"

Fig. 1: Example of an RTRTR data flow

18 Chapter 4. Example Scenario

RTRTR User Manual, Release 0.2.3-dev

(continued from previous page)

refresh = 60

ANY UNIT

[units.round-robin]
type = "any"
sources = ["eu-west-3", "ap-south-1", "us-east-2"]
random = false

SLURM

[units.static-routes]
type = "slurm"
source = "round-robin"
files = ["/var/lib/rtrtr/local-expections.json"]

RTR TARGET

[targets.dc1-rtr]
type = "rtr"
listen = ["dc1.rtr.example.net:9001"]
unit = "static-routes"

JSON TARGET

[targets.dc1-json]
type = "http"
path = "/json"
format = "json"
unit = "round-robin"

4.1. Configuration File 19

RTRTR User Manual, Release 0.2.3-dev

20 Chapter 4. Example Scenario

CHAPTER

FIVE

MANUAL PAGE

5.1 Synopsis

rtrtr [options]

5.2 Description

RTRTR is an RPKI data proxy, designed to collect Validated ROA Payloads from one or more sources in multiple
formats and dispatch it onwards. It provides the means to implement multiple distribution architectures for RPKI such
as centralised RPKI validators that dispatch data to local caching RTR servers.

RTRTR can read RPKI data from multiple RPKI Relying Party packages via RTR and JSON and, in turn, provide an
RTR service for routers to connect to. The HTTP server provides the validated data set in JSON format, as well as a
monitoring endpoint in plain text and Prometheus format.

5.3 Options

-c path, --config=path
Provides the path to a file containing the configuration for RTRTR. See CONFIGURATION FILE below for more
information on the format and contents of the file.

This option is required.

-v, --verbose
Print more information. If given twice, even more information is printed.

More specifically, a single -v increases the log level from the default of warn to info, specifying it more than
once increases it to debug.

See LOGGING below for more information on what information is logged at the different levels.

-q, --quiet
Print less information. Given twice, print nothing at all.

A single -q will drop the log level to error. Repeating -q more than once turns logging off completely.

--syslog
Redirect logging output to syslog.

This option is implied if a command is used that causes Routinator to run in daemon mode.

--syslog-facility=facility
If logging to syslog is used, this option can be used to specify the syslog facility to use. The default is daemon.

21

RTRTR User Manual, Release 0.2.3-dev

--logfile=path
Redirect logging output to the given file.

-h, --help
Print some help information.

-V, --version
Print version information.

5.4 Configuration File

The configuration file describes how and from where RTRTR is collecting data, how it processes it and how it should
provide access to the resulting data set or data sets.

The configuration file is a file in TOML format. It consists of a sequence of key-value pairs, each on its own line.
Strings are to be enclosed in double quotes. Lists can be given by enclosing a comma-separated list of values in square
brackets. The file contains multiple sections, each started with a name enclosed in square brackets.

The first section without a name at the beginning of the file provides general configuration for RTRTR as a whole. It is
followed by a single section for each component to be started.

There are two types of components: units and targets. Units take data from somewhere and produce a single, constantly
updated data set. Targets take the data set from exactly one other unit and serve it in some specific way.

Both units and targets have a name and a type that defines which particular kind of unit or target this is. For each type,
additional arguments need to be provided. Which these are and what they mean depends on the type.

The section of a component is named by appending the name of the component to its class. I.e., a unit named foo
would have a section name of [unit.foo] while a target bar would have a section name of [target.bar].

The following reference lists all configuration options for the global section as well as all options for each currently
defined unit and target type. For each option it states the name, type, and purpose. Any relative path given as a
configuration value is interpreted relative to the directory the configuration file is located in.

5.5 Global Options

http-listen A list of string values each specifying an address and port the HTTP server should listen on. Address and
port should be separated by a colon. IPv6 address should be enclosed in square brackets.

RTRTR will listen on all address port combinations specified. All HTTP endpoints will be available on all of
them.

log-level A string value specifying the maximum log level for which log messages should be emitted. The default is
warn.

log A string specifying where to send log messages to. This can be one of the following values:

default Log messages will be sent to standard error if Routinator stays attached to the terminal or to syslog if it
runs in daemon mode.

stderr Log messages will be sent to standard error.

syslog Log messages will be sent to syslog.

file Log messages will be sent to the file specified through the log-file configuration file entry.

The default if this value is missing is, unsurprisingly, default.

22 Chapter 5. Manual Page

RTRTR User Manual, Release 0.2.3-dev

log-file A string value containing the path to a file to which log messages will be appended if the log configuration
value is set to file. In this case, the value is mandatory.

syslog-facility A string value specifying the syslog facility to use for logging to syslog. The default value if this entry
is missing is daemon.

5.6 RTR Units

There are two units that download RPKI data sets from an upstream server using the RPKI-to-Router protocol (RTR).
The unit of type "rtr" uses unencrypted RTR while "rtr-tls" uses RTR over TLS.

The RTR units have the following configuration options:

remote A string value specifying the remote server to connect to. The string must contain both an address and a port
separated by a colon. The address can be given as a an IP address, enclosed in square brackets for IPv6, or a host
name.

For the "rtr-tls" unit, the address portion will be used to verify the server certificate against.

This option is mandatory.

retry An integer value specifying the number of seconds to wait before trying to reconnect to the server if it closed
the connection.

If this option is missing, the default of 60 seconds is used.

cacerts Only used with the "rtr-tls" type, a list of paths to files that contain one or more PEM encoded certificates
that should be trusted when verifying a TLS server certificate.

The "rtr-tls" unit also uses the usual set of web trust anchors, so this option is only necessary when the RTR
server doesn’t use a server certificate that would be trusted by web browser. This is, for instance, the case if the
server uses a self-signed certificate in which case this certificate needs to be added via this option.

5.7 JSON Unit

A unit of type "json" imports and updates an RPKI data set through a JSON-encoded file. It accepts the JSON format
used by most relying party packages.

The "json" unit has the following configuration options:

uri A string value specifying the location of the JSON file expressed as a URI.

If this is an http: or https: URI, the unit will download the file from the given location.

If this is a file: URI, the unit will load the given local file. Note that the unit just uses the path as given, so
relative paths will interpreted relative to the current directory, whatever that may be.

refresh An integer value specifying the number of seconds to wait before attempting to re-fetch the file.

This value is used independently of whether the previous fetch has succeeded or not.

5.6. RTR Units 23

RTRTR User Manual, Release 0.2.3-dev

5.8 Any Unit

A unit of type "any" will pick one data set from one of a number of source units. The unit will only pick a source if it
has an updated data set and can therefore be used to fall back to a different unit if one fails.

The "any" unit has the following configuration options:

sources A list of strings each containing the name of a unit to use as a source.

random A boolean value specifying whether the unit should pick a source unit at random. If the value is false or
not given, the source units are picked in the order given.

5.9 SLURM Unit

A unit of type "slurm" will apply local exception rules to a data set provided by another unit. These rules are defined
through local JSON files as described in RFC 8416. They allow to both filter out existing entries in a data set as well
as add new entries.

The "slurm" unit has the following configuration options:

source A string value specifying the name of the unit that provides the data set to apply the local exceptions to.

files A list of strings each specifying the path to a local exception file.

The files are continously checked for updates, so RTRTR does not need to be restarted if the files are updated.

5.10 RTR Targets

There are two types of targets that provide a data set as an RTR server. The target of type "rtr" provides the data set
over unencrypted RTR while the type "rtr-tls" offers the set through RTR over TLS.

The RTR targets have the following configuration options:

listen A list of string values each specifying an address and port the RTR target should listen on. Address and port
should be separated by a colon. IPv6 address should be enclosed in square brackets.

unit A string value specifying the name of the unit that provides the data set for the RTR target to offer.

history-size An integer value specifying the number of diffs the target should keep in order to process RTR serial
queries, i.e., the number of updates to the data set a client may fall behind before having to fetch the full data set
again.

If this value is missing, it defaults to 10.

The "rtr-tls" target has the following additional configuration options:

certificate A string value providing a path to a file containing the PEM-encoded certificate to be used as the TLS server
certificate.

key A string value providing a path to a file containing the PEM-encoded certificate to be used as the private key by
the TLS server.

24 Chapter 5. Manual Page

https://tools.ietf.org/html/rfc8416.html

RTRTR User Manual, Release 0.2.3-dev

5.11 HTTP Target

A target of type "http" will offer the data set provided by a unit for download through the HTTP server.

The "http" target has the following configuration options:

path A string value specifying the path in the HTTP server under which the target should offer its data.

All HTTP targets share the same name space in RTRTR’s global HTTP server. This value provides the path
portion of HTTP URIs. It should start with a slash.

format A string value specifying the format of the data set to be offered. Currently, this has to be "json" for the JSON
format.

unit A string value specifying the name of the unit that provides the data set for the RTR target to offer.

5.12 Logging

In order to allow diagnosis of the operation as well as its overall health, RTRTR logs an extensive amount of information.
The log levels used by syslog are utilized to allow filtering this information for particular use cases.

The log levels represent the following information:

error Information related to events that prevent RTRTR from continuing to operate at all as well as all issues related
to local configuration even if RTRTR will continue to run.

warn Information about events and data that influences the data sets produced by RTRTR. This includes failures to
communicate with upstream servers, or encountering invalid data.

info Information about events and data that could be considered abnormal but do not influence the data set.

debug Information about the internal state of RTRTR that may be useful for debugging.

5.11. HTTP Target 25

RTRTR User Manual, Release 0.2.3-dev

26 Chapter 5. Manual Page

INDEX

Symbols
-V

command line option, 22
--config=path

command line option, 21
--help

command line option, 22
--logfile=path

command line option, 22
--quiet

command line option, 21
--syslog

command line option, 21
--syslog-facility=facility

command line option, 21
--verbose

command line option, 21
--version

command line option, 22
-c path

command line option, 21
-h

command line option, 22
-q

command line option, 21
-v

command line option, 21

C
command line option

-V, 22
--config=path, 21
--help, 22
--logfile=path, 22
--quiet, 21
--syslog, 21
--syslog-facility=facility, 21
--verbose, 21
--version, 22
-c path, 21
-h, 22
-q, 21

-v, 21

R
RFC

RFC 8416, 15, 24

27

	Installation
	System Requirements
	Binary Packages
	Updating
	Installing Specific Versions

	Building From Source
	Dependencies
	C Toolchain
	Rust

	Building and Updating
	Updating
	Installing Specific Versions

	Platform Specific Instructions
	OpenBSD
	CentOS 6

	Configuration
	General Parameters
	Units
	RTR Unit
	JSON Unit
	Any Unit
	SLURM Unit

	Targets
	RTR Target
	HTTP Target

	Example Scenario
	Configuration File

	Manual Page
	Synopsis
	Description
	Options
	Configuration File
	Global Options
	RTR Units
	JSON Unit
	Any Unit
	SLURM Unit
	RTR Targets
	HTTP Target
	Logging

	Index

